
www.manaraa.com

Stability of Discrete Time Transfer Matrix Method (DT-TMM)

by Vahid Alizadehyazdi, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of
Master of Science

in the field of Mechanical Engineering

Advisory Committee:

Ryan Krauss, Chair

Keqin Gu

Fengxia Wang

Graduate School
Southern Illinois University Edwardsville

May, 2016

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10128867

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10128867

www.manaraa.com

c© Copyright by Vahid Alizadehyazdi May, 2016
All rights reserved

www.manaraa.com

ABSTRACT

STABILITY OF DISCRETE TIME TRANSFER MATRIX METHOD (DT-TMM)

by

VAHID ALIZADEHYAZDI

Chairperson: Professor Ryan Krauss

Large dynamic systems and flexible structures like long robot links with many degree

of freedoms are always challenging issues for engineers to model and control. These

structures can be modeled with some methods like modal superposition and numerical

integration.

The Transfer Matrix Method (TMM) is another method that can be used to model

large systems with a huge number of subsystems and flexible structures. The size of

matrices in transfer matrix models remain small regardless of the number of elements in

model. Having smaller matrix sizes helps us to have less computational expense leading

to a faster answer. Also, this method is very flexible, because it is possible for us to add

or eliminate one subsystem easily. The transfer matrix method like other methods has its

drawbacks. The TMM is limited to linear systems and can not be used for non-linear

ones. Moreover, this method just gives frequency-domain output and can not perform

time-domain simulation.

By combining TMM and numerical integration methods, we have a new method

which is called the Discrete-Time Transfer Matrix Method (DT-TMM). The DT-TMM

can model non-linear systems too. Time-domain output is another advantage of this

method. Two approaches are considered in this research to combine the TMM and

ii

www.manaraa.com

numerical integration. The first approach is describing acceleration and velocity based on

the displacement. Another approach is using acceleration to calculate the velocity and

displacement. Also, different methods of numerical integration like Fox-Euler, Houbolt,

Park Stiffly Stable, Newmark Beta and Wilson θ are studied in this research.

iii

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express my special thanks and gratitude to my adviser Dr. Ryan Krauss

who gave me this opportunity to do my research under his guidance. His patience and

support helped me overcome barriers. I want to thank him for his financial support

through the mechanical engineering department. I learned a lot of things from him, not

only in our research but also about responsibility, kindness and teaching. It has been

my pleasure to work for him, and I hope in the future I can be someone like him in my

professional and personal life.

I would like to thank Dr. Fengxia Wang,who gave me the Chance of working with her

for about one year. I appreciate her support and help and would like to thank her for

being part of the committee.

Also, I want to thank Dr. Majid Molki,the department chair for the financial support

through the mechanical engineering department.

Thanks to Dr.Keqin Gu, who helped me a lot during my admission process and thanks

for being part of the committee.

iv

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . vii

Chapter

1. INTRODUCTION . 1

1.1 Problem Statement . 1
1.2 Software Design . 2

2. LITERATURE REVIEW . 3

3. Introduction to State Vector and Transfer Matrix Method 8

3.1 State Vector . 8
3.2 Transfer Matrix Method . 8

4. Introduction to Discrete Time Transfer Matrix Method(DT-TMM) . . . 22

4.1 Why DT-TMM . 22
4.2 DT-TMM for One Degree of Freedom System 22
4.3 Pyhton Code for One Degree of Freedom DT-TMM 31

5. ODE Integration of n Degree of Freedom System 37

6. Numerical Integration Methods in DT-TMM 46

6.1 Introduction . 46
6.2 Explicit Method . 46
6.3 Implicit Method . 47
6.4 Numerical Integration Methods of DT-TMM 48

6.4.1 Fox-Euler . 48
6.4.2 Newmark Beta . 50
6.4.3 Wilson Theta . 56
6.4.4 Houbolt . 58
6.4.5 Park Stiffly Stable . 61

v

www.manaraa.com

7. New Approach Based on the Acceleration for DT-TMM 66

7.1 One Degree of Freedom System . 66
7.2 Numerical Integration of New Method 72

7.2.1 Fox-Euler . 72
7.2.2 Newmark Beta . 74
7.2.3 Wilson θ . 76

7.3 Pyhton Code for n Degree of Freedom with New Approach of DT-TMM 79

8. CONCLUSION . 81

8.1 Conclusion . 81
8.2 Future Work . 82

REFERENCES . 84

APPENDICES . 87

A. DT-TMM (One Degree of Freedom) . 87

B. ODE Integration (n Degree of Freedom) 89

C. DT-TMM n Degree of Freedom . 93

D. DT-TMM n Degree of Freedom Based on the Acceleration 99

vi

www.manaraa.com

LIST OF FIGURES

Figure Page

3.1 is a simple one degree of freedom mass-damper system which is
exploded in . 9

3.2 and as can be seen all internal forces and displacements described in details. 9
3.3 shows a two-degree of freedom mass-spring-damper system with

internal forces . 13
3.4 Exploded view of the two degree of freedom mass-spring-damper system 14

4.1 One degree of freedom mass-spring-damper system 25
4.2 Exploded view of one degree of freedom mass-spring-damper system . . . 25
4.3 Step response of one degree of freedom mass-spring-damper system

(DT-TMM) . 36

5.1 n+ 1 degree of freedom mass-spring-damper system 37
5.2 Two degree of freedom mass-spring-damper system 38
5.3 Step response of two degree of freedom system (odeint code) 44
5.4 Comparison of DT-TMM and odeint output for one degree of

freedom system . 45

6.1 Comparison of DT-TMM Fox-Euler and odeint fot the two DOF system 51
6.2 Comparison of DT-TMM Newmark Beta and odeint for the two DOF system 54
6.3 Comparison of DT-TMM Newmark Beta for different β 55
6.4 Wilson θ . 56
6.5 Comparison of Wilson θ with different θ with odeint 58
6.6 Comparison of Houbolt and odeint for the two degree of freedom

system . 60
6.7 Comparison of Park Stiffly Stable and odeint for the two degree of

freedom system . 62
6.8 Step response of 15 DOF system with different DT-TMM method 64
6.9 Step response of the 15 DOF system based on Newmark Beta for

different β . 65

7.1 One degree of freedom mass-spring-damper system 67
7.2 Exploded view of One degree of freedom mass-spring-damper system . . 67
7.3 Comparison of Fox-Euler DT-TMM based on acceleration and

displacement with odeint . 73
7.4 Comparison of Newmark Beta DT-TMM based on acceleration and

displacement with odeint . 75
7.5 Comparison of Wilson θ DT-TMM based on acceleration and

displacement with odeint when θ = 0.9 77
7.6 Comparison of Wilson θ DT-TMM based on acceleration and

displacement with odeint when θ = 1.03 78

vii

www.manaraa.com

LIST OF TABLES

Table Page

6.1 Parameters of the system (DOF=15). 65

viii

www.manaraa.com

CHAPTER 1

INTRODUCTION

These days, large systems with many subsystems and flexible structures (due to fast

response and lower weight) can be seen in many systems in industry. Also, in some

cases simultaneously we have flexible and rigid structures in a system. Modeling of rigid

elements in a system is not a challenging problem. By using flexible structures, engineers

are faced with new issues in modeling and controlling, such as the distributed nature of

these structures.

There are some ways that flexible structures and large systems can be modeled for

control design, such as modal superposition, numerical integration and the transfer matrix

method. Each of these methods has its benefits and drawbacks. In modal superposition,

eigenvectors and eigenvalues of the system matrix should be computed which requires a

lot of work. Also, modal superposition is based on the assumption of having proportional

damping.

Numerical integration is another way that can be used to model a system. Wilson

θ, Newmark Beta, Fox-Euler and other numerical methods are the basis of this method.

Choosing among these methods depends on the accuracy, time steps and application.

The challenging problem in numerical integration method happens when we have a large

system with many degrees of freedom. It increases the size of matrices, so we need to do

a lot of computation.

Another way to model these structures is the transfer matrix method.

1.1 Problem Statement

The transfer matrix method is one of the method that can model flexible structures

and large systems easily. The size of matrices in the TMM is much lower than other

methods and depends on the number of states ,but does not depend on the number of

www.manaraa.com

2

elements. This method has some limitations. The transfer matrix method can model linear

systems using a Laplace transform. Also, we just have frequency domain output in this

method. By combining TMM and numerical integration method, we can have advantages

of these two methods in one package. This method is called discrete time transfer matrix

method (DT-TMM). DT-TMM has the benefits of numerical integration method which

are ability to model nonlinear system with time-domain output and advantages of TMM

which are low size of matrices and flexibility to add or eliminate subsystems easily.

The DT-TMM, like the numerical integration method, is sensitive to time steps and

based on choosing an integration method to use and accuracy of the response changes.This

research focus on the stability of the DT-TMM and how to increase the accuracy.

To reach this goal, two ways are investigated to add integration method to the TMM.

In the first way, acceleration and velocity are rewritten based on the displacement. In the

other step, displacement and velocity are rewritten based on the acceleration. For both of

mentioned approaches, different numerical integration methods were studied.

1.2 Software Design

This research is done using a programming language called Python. Python is a very

powerful and open source programming language which is simple and easy to learn. In

this research, four Python codes have been written. First, an ode code for a system

with arbitrary degrees of freedom was written. This code is used to compare with the

output responses of the DT-TMM method. Second code was written for the DT-TMM

method for one degree of freedom based on the displacement. The DT-TMM code based

on displacement for arbitrary degrees of freedom was written in third step.Finally, by

rewriting third code, new DT-TMM code for arbitrary degrees of freedom based on

acceleration was achieved.

www.manaraa.com

3

CHAPTER 2

LITERATURE REVIEW

Research on the transfer matrix method for flexible structures and large systems covers a

lot of manipulators and robotic systems. Due to the benefits of the transfer matrix method

(lower size of matrices, lower computation and flexibility to add or eliminate subsystems),

researchers have been trying to find some ways that can overcome its disadvantages.

In Matrix Methods in Elastomechanics book [1], Pestel explains different matrix

methods in elastomechanics. He introduces how to break up a large system into subsystems

with simple properties. Then, he discusses different methods to extract a matrix from

each subsystem. Pestel, tries to show the application of this method in real world and

industry, where a huge system is made from a lot of small subsystems.

In modeling, design, and control of flexible manipulator arms Book [2] explains how

to use transfer matrix method to model rigid robot links. Book considers four variables

(displacement, shearing force, moment and angle) to describe his system. Book et al.

[3, 4] show how to use the transfer matrix method to model and control a space shuttle

manipulator.

Krauss [5] uses the TMM to model the closed-loop response of a system. In his work,

a flexible robot with about five meters of arm is modeled based on the TMM. Also, a

software is designed to do the TMM analysis and use the output to control the system.

Actuator dynamics and its interaction were two challenging parts of modeling in his

research. Lateral displacement, rotation, bending moment and shearing force were chosen

to model the actuator. In designing a controller, he consider approaches like using Bode

plots and pole-placement.

The TMM can be used accurately where actuators and sensors have exactly the same

locations. However, in most of the cases, actuators and sensors do not have exactly the

www.manaraa.com

4

same position. This situation can affect the stability of the system. Krauss[6] study how

to use the TMM to model non-collocated systems.Kruass[7] explains how he uses Python

as a programming language to model a flexible robot based on TMM.

Another method to model flexible and large systems is transfer dynamic stiffness

matrix(TDSM). TDSM is a combination of dynamic stiffness and transfer matrix method.

TDSM is frequency dependent. Yu et al.[8] use TDSM to analyse a space structure with

Timoshenko beam theory and compared the results with FEM.

Tail shafts of ships which carry the propeller are flexible structures. Xiao-jun[9] could

model this important part of a ship with the transfer matrix method. Genetic algorithm

is the method she used to calculate natural frequency of the system.

Bin He et al[10] studied the natural vibration of a tree structure with TMM. A tree

structure is exactly like a real tree in the environment. It has some nodes and branches.

This structure is divided into two subsystems, chain subsystem, and branch subsystem.

Chain subsystem has one input and one output, however branch subsystem has one output

with one or more inputs. Transfer matrix for branch and chain subsystems are calculated

separately and after that these two matrices combine together to reach the final transfer

matrix.

Xiaoting Rui et al. [11] applied the TMM to model a hybrid linear multi-body system.

This method is called Multi-Body System Transfer Matrix Method (MSTMM).Their

method can be used to calculate eigenvalues,orthogonality of eigenvectors, dynamic

response and connected parameters of multi-body systems. Because of lower order of the

matrices in this method, the speed of computation is much faster than regular methods.

Also, to confirm the application of this method, they used MSTMM in a practical case.

Krauss et al.[12] modeled a robot with flexible and rigid links by using the finite

element method(FEM) and transfer matrix method(TMM). Flexibility of joints is a key

factor that they considered in their research and by this consideration the output of the

www.manaraa.com

5

TMM and FEM is fairly close to the experimental outputs.Guo and Wu [13] present TMM

and FEM modeling of wave penetrating catamaran (WPC) to see which one gives better

results on mode shape and natural frequency. They conclude that FEM is a better way

for modeling of WPC compared with TMM.

Mihail et al.[14] use the TMM and Bessel’s functions to model a variable cross-section

beam(conical shape). Results show that combination of Bessel’s functions and transfer

matrix method gives more accurate answer compare with piecemeal TMM. Dokanish[15]

applies transfer matrix method with FEM to study the vibration of plates. To reach this

point, he divvied a plate to many strips with related mass and stiffness. State variables

in his research were displacement and internal force.

Zu and Ji [16] tried to to improve the TMM for a nonlinear system(Rotor-Bearing

System). To consider the effects of rotary inertia and shear deformation, Timoshenko

beam theory is used to model a shaft. Bearings are modeled by linear damping and

nonlinear springs. To solve non linearity of the bearing force, it is split in terms of space

and time.

Ellakany et al.[17] combine the TMM and analogue beam method to study the vibration

of a composite beam. In this study, the beam is divided into some subsystems. Each

sub-beam is supposed to behave based on the Bernouli-Euler beam theory. Also, shear

deformation is neglected in this research.

A lot of researchers try to improve the FEM method by incorporating the TMM.

To analyze displacement of large systems Ohga et al.[18] use tangent stiffness to apply

TMM. They show that this method works for long and thin structures. Bao Rong et

al[19] expand TMM and FE to compute the eigenvalues of flexible structures. To confirm

their method, they give some numerical examples.

Lee[20] introduce spectral TMM. Matrices in this method are derived from motion

equations.Coupling lateral and torsional vibrations studied by Hsieha et al.[21] with the

www.manaraa.com

6

TMM. Euler’s angles show the orientation of the shaft and disk. Equations of motions

are derived from Hamilton’s Principle and Newton’s second law. In this research, transfer

matrices are calculated by the harmonic balance method.Horner and Pilkey[22] use Ricatti

in the TMM to speed up the calculations to half of the TMM. Rotating shafts are analyzed

by this method to confirm the applicability.

The Newton-Raphson method and the TMM were used by Huang and Horng [23]

to study torsional vibration of branched structures.They demonstrate this method for a

three free-end boundaries system.

Due to limitations of the TMM which are restriction on modeling non-linear systems

and frequency domain outputs, researchers use the TMM method and numerical integration

method at the same time and called it DT-TMM which means Discrete Time Transfer

Matrix Method. Kumar and Sankar[24]use the DT-TMM to have the advantages of

numerical integration and the TMM methods together. In this way, they reduced the

matrix sizes and could model non-linear systems. Also, they could show their results in a

time-domain system. In this research, acceleration and velocity were expressed based on

displacement. It is mentioned in their research that this method is very sensitive to time

steps, because of the sensitivity of the numerical integration method.

Xiaoting Rui et al[25] applied discrete time transfer matrix method to multi-body

system(MS-DT-TMM) to model multi rigid and flexible systems. This method is a

combination of TMM, DT-TMM, MS-TMM and numerical integration method. Also, X.

Rui et al[26] extended MS-DT-TMM for multi-flexible systems to model multi-rigid ones.

Moreover, FEM and MS-DT-TMM applied together to study multi-flexible systems.In

addition, they use MS-DT-TMM, multi-body systems method and Ricattit TMM to

extend modeling of multi-systems.

B. Rong et al.[27] expand the discrete time transfer matrix method to control a

controlled multi-body system. Flexibility and lower size of matrices are two parameters

www.manaraa.com

7

that speed up the calculations compared with other conventional methods. They design

state vectors and transfer matrices for an actuator, controlled elements, and feedback

elements.They compared the result of their method with conventional dynamics method

and the result was the same. In designing the controller, velocity was considered to use

in the feedback controller.

He,Wang and Rui[28] studied how using Ricatti in the DT-TMM can increase the

stability of the system. The DT-TMM and rotational springs helps to have dynamic

equations in this research. A beam considered as a lot of rigid bodies which are connected

together by rotational springs. k for the spring is calculated by FE. Due to numerical

error, one corrector method was used in this study. This corrector computes the transfer

matrix of elements and related Ricatti matrices and compares all the state vectors of each

node. Corrector continues this operation until requested accuracy is reached.

www.manaraa.com

8

CHAPTER 3

Introduction to State Vector and Transfer Matrix Method

Since the TMM method is the base of Discrete Time Transfer Matrix Method, in this

chapter TMM is explained in details for a simple two degree of freedom system.

3.1 State Vector

Sate vector at a point of an elastic system is a column vector which indicates the

displacement of the point and its internal force. The displacement in the upper and the

force in lower half of the column should be written.

For example in a simple mass and spring system the state vector is

x
f

 where

x: shows displacement

f: shows internal force

In a mass less shaft with disks displacement represented as the angle of twist (φ) and

force is the related torque (T). State vector for this system is

φ
T

.

To have more accurate answer in a straight beam, displacement’s factors are deflection

(w) and slope (ψ). Also, force’s factors are moment (M) and shear force (V). This state

vector can be given by



w

ψ

M

V


.

3.2 Transfer Matrix Method

After knowing state vectors for some usual systems in mechanics, let transfer matrix

method be introduced. The transfer matrix method which is usually called TMM is a

method which breaks a system into the number of components.

www.manaraa.com

9

Figure 3.1: is a simple one degree of freedom mass-damper system which is exploded in

Figure 3.2: and as can be seen all internal forces and displacements described in details.

m

x0

k

x1 x2

F

Figure 3.1: One degree of freedom mass-spring system

Exploded of above system can be seen in figure 3.2.

m
k

x1

f1

x0

f0

x2x1

f2f1

Figure 3.2 : Exploded view of the one degree of freedom mass-spring system

As the spring is mass less,

f0 = f1 (3.1)

f0 = k(x1 − x0) (3.2)

www.manaraa.com

10

x1 =
f0

k
+ x0 (3.3)

(3.1) And (3.3) can be written in a matrix form:x1

f1

 =

1 1
k

0 1


x0

f0

 (3.4)

Us =

1 1
k

0 1

 (3.5)

Us is the transfer matrix of the spring which transfer state vector from point 0 to

point1.

If the mass considered as a rigid body, for second part of our system can be written:

x1 = x2 (3.6)

f2 − f1 = mẍ1 (3.7)

By using Laplace transform

f2 − f1 = ms2x1 (3.8)

f2 = f1 +ms2x1 (3.9)

(3.5) And (3.9) can be written in a matrix form:

x2

f2

 =

 1 0

ms2 1


x1

f1

 (3.10)

www.manaraa.com

11

Um =

 1 0

ms2 1

 (3.11)

Um is transfer matrix of mass .

Plugging in x1 and f1 from equation 3.4 gives

x2

f2

 =

 1 0

ms2 1


1 1

k

0 1


x0

f0

 (3.12)

x2

f2

 =

 1 1
k

ms2 ms2

k
+ 1


x0

f0

 (3.13)

In a free response system

x0 = 0 (3.14)

f2 = 0 (3.15)

The above equation yield the results

x2

0

 =

 1 1
k

ms2 ms2

k
+ 1


 0

f0

 (3.16)

The first row gives

x2 =
f0

k
(3.17)

www.manaraa.com

12

The second row gives

(
ms2

k
+ 1)f0 = 0 (3.18)

Non-trivial solution for equation 15 gives

(
ms2

k
+ 1) = 0 (3.19)

s = ±j
√
k

m
(3.20)

The imaginary part of the solution is natural frequency.

In a forced response system which f2= F6= 0 and x0 = 0 equation 3.13 can be written

x2

F

 =

 1 1
k

ms2 ms2

k
+ 1


 0

f0

 (3.21)

The first row gives

x2 =
f0

k
(3.22)

The second row gives

F =
ms2

k
f0 (3.23)

If Equation 23 plugs in equation 22, transfer function for the system can be written

x2

F
=

1

ms2 + k
(3.24)

www.manaraa.com

13

Figure 3.3: shows a two-degree of freedom mass-spring-damper system with internal forces

However, Laplace transform is much easier way to reach the transfer function for this

system, but in complicated systems this method will help a lot.

To be more familiar with TMM, a forced two degree of freedom system will be

presented in below.

m1 m2

x0

k1 k2

c1 c2

x1 x2 x3 x4

F1 F2

Figure 3.3: Two degree of freedom mass-spring-damper system

Exploded of the above system can be seen in figure 3.4.

As the spring s1 and the damper d1 are mass less

f0 = f1 (3.25)

f1 = k1(x1 − x0) + c1(ẋ1 − ẋ0) (3.26)

By using Laplace transform

f1 = k1(x1 − x0) + c1s(x1 − x0) (3.27)

www.manaraa.com

14

m1
k1

c1

x1

f1

x0

f0

x2x1

f2f1

m2
k2

c2

x3

f3

x2

f2

x4x3

f4f3

Figure 3.4: Exploded view of the two degree of freedom mass-spring-damper system

If equation 3.27 solves for x1

x1 = x0 +
f1

k1 + c1s
(3.28)

Equation 3.25 and 3.28 gives

x1

f1

 =

1 1
k1+c1s

0 1


x0

f0

 (3.29)

Us1d1 =

1 1
k1+c1s

0 1

 (3.30)

Us1d1 is the transfer matrix of spring s1 and damper d1 . For the next component

since the mass m1 is rigid

www.manaraa.com

15

x1 = x2 (3.31)

f2 − f1 = m1ẍ1 (3.32)

By using Laplace transform

f2 − f1 = m1s
2x1 (3.33)

f2 = f1 +m1s
2x1 (3.34)

Equation 3.31 and 3.34 can be written

x2

f2

 =

 1 0

m1s
2 1


x1

f1

 (3.35)

Um1 =

 1 0

m1s
2 1

 (3.36)

Um1 is transfer matrix of mass m1 .

When external force does not apply on the last element, augmented transfer matrices

can play the role of injecting forces, moments, or displacements into the TMM matrices.

It means one extra column and row should be added to the transfer matrix. All added

elements are zero except the lower one on the diagonal which is 1.

An augmented mass transfer matrix will take the form

www.manaraa.com

16

Um =


1 0 0

ms2 1 0

0 0 1

 (3.37)

An augmented spring/damper transfer matrix will be

Usd =


1 1

k+cs
0

0 1 0

0 0 1

 (3.38)

An augmented forcing transfer matrix will be

UF =


1 0 0

0 1 −F

0 0 1

 (3.39)

When using augmented matrices, state vector should be in below form

Z =


x

f

1

 (3.40)

Now augmented matrices can be written for all components. Augmented spring/damper

transfer matrix for spring/damper1

Us1d1 =


1 1

k1+c1s
0

0 1 0

0 0 1

 (3.41)

www.manaraa.com

17

Augmented mass transfer matrix for m1

Um1 =


1 0 0

m1s
2 1 0

0 0 1

 (3.42)

Augmented forcing transfer matrix for F1

UF 1 =


1 0 0

0 1 −F1

0 0 1

 (3.43)

Augmented spring/damper transfer matrix for spring/damper2

Us2d2 =


1 1

k2+c2s
0

0 1 0

0 0 1

 (3.44)

Augmented mass transfer matrix for m2

Um2 =


1 0 0

m2s
2 1 0

0 0 1

 (3.45)

Now, transfer matrix of the system can be achieved by multiplying all transfer matrices.

The order of multiplication is from end to first. If F2 =0 then

Usys = Um2Us2d2UF 1Um1Us1d1 (3.46)

www.manaraa.com

18

State vector of base is

Zbase =


xbase

fbase

1

 (3.47)

State vector of end is

Zend =


xend

fend

1

 (3.48)

By applying boundary conditions which are

Fend = 0 (3.49)

xbase = 0 (3.50)

Base and end state vectors are

Zbase =


0

fbase

1

 (3.51)

Zend =


xend

0

1

 (3.52)

www.manaraa.com

19

By having Usys

Zend = UsysZbase (3.53)

Usys Can be written in this form

Usys =


U11 U12 U13

U21 U22 U23

U31 U32 U33

 (3.54)

Plugging in Zend ,Zbase and Usys in equation 3.53


xend

0

1

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33




0

fbase

1

 (3.55)

xend And fbase are unknown From line 2 of equation 3.55

U22fbase + U23 = 0 (3.56)

fbase =
−U23

U22

(3.57)

State vector of base is

Zbase =


0

−U23

U22

1

 (3.58)

www.manaraa.com

20

By having Zbase , state vector of every point in the system can be obtained. For

instance, state vector for point 2 is

Z2 = Zm1 = Um1Us1d1Zbase (3.59)

Also, state vector of point 3 is

Z3 = Us2d2Um1Us1d1Zbase (3.60)

Equations of 3.59 and 3.53 can be used to obtain transfer function x1/F and x2/F .

From equation 3.59


x1

f1

1

 =


1 0 0

m1s
2 1 0

0 0 1




1 1
k1+c1s

0

0 1 0

0 0 1




0

−U23

U22

1

 (3.61)

From equation 3.61,x1
F

is equal

x1

F
=
m2s

2 + c2s+ k2

P
(3.62)

From Equation 3.53, x2
F

is equal

x2

F
=
c2Fs+ Fk2

P
(3.63)

where P is

(m1m2)s4 + (c2m1 + c2m2 + c1m2)s3 + (k2m2 + k1m2 + k2m1 + c1c2)s2 + (k2c1 + k1c2)s+ k1k2

(3.64)

www.manaraa.com

21

For systems with low degree of freedom using TMM method is not reasonable, however

when the degree of freedom increases TMM can be much easier to model a system and

reach to transfer matrices.

As mentioned before, TMM has some limitations. TMM just can model linear systems

and its output is in frequency domain. Numerical integration comes to help us to overcome

these limitations. Combination of TMM and numerical integration method can solve

these issues. Thus, Modeling non-linear systems and time domain output are reachable

by applying DT-TMM method.DT-TMM will be introduce in the next chapter and its

output will be compared with newton method.

www.manaraa.com

22

CHAPTER 4

Introduction to Discrete Time Transfer Matrix Method(DT-TMM)

4.1 Why DT-TMM

As explained before in introduction and literature review, Because of the Transfer

Matrix Method limitations, researchers have been trying to modify TMM. TMM just can

model linear systems due to using Laplace transform. Also, its output is just frequency

domain. One the most effective method that engineers work on that is combining

TMM and numerical integration methods which is called discrete time transfer matrix

method(DT-TMM). This combination has the benefits of both methods. The order of

matrices in DT-TMM is like TMM which lead to lower computation and faster response.

Moreover, DT-TMM can model non-linear systems and has the ability to have time-

domain output due to using numerical integration method. Unfortunately, DT-TMM

inherits the drawback of numerical engineering which is sensitivity to time steps. Time

steps should be chosen in a way that have the lowest effects on the output. In this chapter

one degree of freedom and two degree of freedom systems will be explained in details by

this method.

4.2 DT-TMM for One Degree of Freedom System

State vector in DT-TMM method is exactly like TMM. In the following examples

the state vector is based on the displacement and internal force. One degree of freedom

system which contain mass, spring and damper can be seen in figure 4.1. It is divided to

3 parts which are

1-spring-damper

2-mass

3-force

www.manaraa.com

23

also, there are 3 nodes of x0, x1, x2

Kumar and Sankar [24] to combine the TMM method with numerical integration

method considered the velocity and acceleration in terms of displacement. In this way

there is no need to use Laplace transform which limit the TMM to linear systems.

Equations that Kumar and Sankar [24] used are in below

ẍn(ti) = An(ti)xn(ti) +Bn(ti) (4.1)

ẋn(ti) = Dn(ti)xn(ti) + En(ti) (4.2)

These equations are linear based on the displacement.

As mentioned before in TMM, a system divided to some subsystems. Each subsystem

can be modeled by a mass-spring-damper system. Each subsystem is called station.

Subscript n is related to the location of the part and denote the number of subsystem.

For example, In figure 4.1, we just have one station (one degree of freedom), so in our

calculation n is equal one. To be more clear, in a two degree of freedom system n will be

equal one and two. Subscript i show the related time step. For example, if we want to

show the response of the system during 1 second and time step is 0.1 second. Then, i can

be from one to ten. Moreover, nth station is composed of mn, kn and cn. ẋn and ẍn show

the velocity and acceleration of mn .

An, Bn, Dn and En are the coefficients of equations 4.1 and 4.2 which should be

calculated in each time step of DT-TMM. Depending on the numerical integration method,

these coefficients are different.

An is the coefficient of xn in equation 4.1 which is proportional to the square of the

time step inversely and is constant in each time step. For example An for Newmark β

method is

www.manaraa.com

24

An =
1

β∆T 2
(4.3)

Depending on the numerical integration method Bn in equation 4.1 is a function of

the different parameters like displacement, velocity and acceleration in the same step time

or step times before. Also, it can be proportional to the square of the time step inversely.

For example Bn for Newmark β method is

Bn =
−1

β∆T 2
[x(ti−1) + ∆T ẋ(ti−1) + (0.5− β)∆T 2ẍ(ti−1)] (4.4)

Dn is the coefficient of xn in equation 4.2 which is proportional to the time step

inversely and is constant in each time step. For example Dn for Newmark β method is

An =
γ

β∆T
(4.5)

Depending on the numerical integration method En in equation 4.2 is a function of

the different parameters like displacement, velocity and acceleration in the same step time

or step times before.For example En for Newmark β method is

En = ẋ(ti−1) + ∆T [(1− γ)ẍ(ti−1) + (γβn)] (4.6)

β and γ are constant numbers and depend on the accuracy and change of the accel-

eration in each time step. Foe example, if the acceleration change linearly in each time

step, β = 1
6

and γ = 1
2

They will be explained latter in details.

DT-TMM for one degree of freedom system will be explained in details. Complete

and exploded one degree of freedom mass-spring-damper system can be seen in next page

figures.

www.manaraa.com

25

m

x0

k

c

x1 x2

F

Figure 4.1: One degree of freedom mass-spring-damper system

m
k

c

x1

f1

x0

f0

x2x1

f2f1

Figure 4.2: Exploded view of one degree of freedom mass-spring-damper system

www.manaraa.com

26

As the spring-damper is mass less

f0 = f1 (4.7)

force on the mass-spring is

f0 = k(x1 − x0) + c(ẋ1 − ẋ0) (4.8)

And force equation for the mass is

f2 − f1 = mẍ1 (4.9)

Since, the mass is rigid

x2 = x1 (4.10)

To combine numerical integration and TMM methods, equation 4.1 and 4.2 need to

be plugged in equations 4.8 and 4.9.

By plugging in 4.2 in 4.8

f0 = f1 = k(x1(ti)− x0(ti)) + c[(D1(ti)x1(ti) + E1(ti))− (D0(ti)x0(ti) + E0(ti))] (4.11)

Equation 4.11 can be written for x1

x1 =
(cD0 + k)x0

(cD1 + k)
+

f0

(cD1 + k)
+
c(E0 − E1)

(cD1 + k)
(4.12)

Equations of 4.12 and 4.7 can be written in matrix form

www.manaraa.com

27


x1

f1

1

 =


(cD0+k)
(cD1+k)

1
(cD1+k)

c(E0−E1)
(cD1+k)

0 1 0

0 0 1



x0

f0

1

 (4.13)

Usd is DT-TMM transfer matrix for spring-damper which transfer state vectors from

point 0 to point 1.

Usd =


(cD0+k)
(cD1+k)

1
(cD1+k)

c(E0−E1)
(cD1+k)

0 1 0

0 0 1

 (4.14)

In the mentioned one degree of freedom system, one station just exist, so D0 and E0

are equal zero.

Equation 4.1 can be substitute in equation 4.9 to achieve DT-TMM transfer matrix

for mass m

f2 − f1 = m[A1(ti)xn(ti) +B1(ti)] (4.15)

This equation can be rewrite for f2

f2 = f1 +mA1(ti)xn(ti) +mB1(ti) (4.16)

Equations of 4.16 and 4.10 can be written in matrix form


x2

f2

1

 =


1 0 0

mA1 1 mB1

0 0 1



x1

f1

1

 (4.17)

www.manaraa.com

28

Um is DT-TMM transfer matrix for mass which transfer state vectors from point 1 to

point 2.

Um =


1 0 0

mA1 1 mB1

0 0 1

 (4.18)

Matrix Uf for DT-TMM is same as TMM.

Uf =


1 0 0

0 1 −F

0 0 1

 (4.19)

Now by having transfer matrices for spring-damper, mass and force system transfer

matrix can be achieved. The method of multiplication of the matrices is exactly same as

TMM method and it starts from end point to start point.

Usys = UfUmUsd (4.20)

State vector of base is

Zbase =


xbase

fbase

1

 (4.21)

State vector of end is

Zend =


xend

fend

1

 (4.22)

www.manaraa.com

29

By applying boundary conditions which are

Fend = 0 (4.23)

xbase = 0 (4.24)

Base and end state vectors are

Zbase =


0

fbase

1

 (4.25)

Zend =


xend

0

1

 (4.26)

By having Usys

Zend = UsysZbase (4.27)

Usys Can be written in this form

Usys =


U11 U12 U13

U21 U22 U23

U31 U32 U33

 (4.28)

Plugging in Zend ,Zbase and Usys in equation 4.27

www.manaraa.com

30


xend

0

1

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33




0

fbase

1

 (4.29)

xend And fbase are unknown From line 2 of equation 4.29

U22fbase + U23 = 0 (4.30)

fbase =
−U23

U22

(4.31)

State vector of base is

Zbase =


0

−U23

U22

1

 (4.32)

By having Zbase , state vector of every point in the system can be obtained. For

instance, state vector for point 2 is

Z2 = Zm = UfUmUsdZbase (4.33)

Also, state vector of point 1 is

Z1 = UsdZbase (4.34)

Now by having the initial conditions (x0 and ẋ0), we can have the displacement of the

system during the time and have a time-domain output.

www.manaraa.com

31

4.3 Pyhton Code for One Degree of Freedom DT-TMM

There are many programming languages that can be used to write DT-TMM code.

Python is the chosen language to write this code due its powerful packages and being

open-source. Python code for one degree of freedom system with mass, spring and damper

is explained in details below.

Numpy is a powerful package for scientific calculation. It can prepare multi-dimensional

arrays for different purposes. To use this ability of Numpy, it is imported at the begining

of the program. Numpy.zeros creates 3 by 3 matrices for transfer matrices of mass,

spring-damper, force and system. It should be mentioned that location of items in python

matrices start from zero. It means, for example Um(0,0) is the content of the cell which is

located in first row and column.

www.manaraa.com

32

New-mark Beta is the integration method which is used here. Based on the explanation

which will be discussed later, β=1/6 and γ = 0.5 considered. In the next step, mass(kg),

spring constant(N/m), damping coefficient (N − Sec/m) and force(N) as the parameters

of the system imported. T is the duration that needs to be studied. dt is time step and is

one of the most important parameters that should be selected carefully to have the stable

response. By dividing T by dt, the number of steps achieved that is demonstrated by N.

As there are N steps to have response of the system during T, Zeros command creates

three N zero arrays function for displacement, velocity and acceleration. Python start

from zero to count items in arrays and matrices. Initial condition to investigate the system

is initial displacement and velocity. In this example, initial conditions are zero. It means

x0 = 0 (4.35)

ẋ0 = 0 (4.36)

www.manaraa.com

33

As zeros command used in this code, it means x0 and ẋ0 are equal zero and there

is no need to enter initial conditions. However, if initial conditions were not zero, after

definition of displacement and velocity by using zeros command, initial displacement

x(0, 0) and velocity ẋ(0, 0) should be defined separately.

In this step, for command is used to have N steps. For each step below stages need

to be done receptively.

1- A, B, D and E coefficients should be calculated.

2-Then, transfer matrices (Uf , Usd, Um) can be achieved by using coefficients of the

first step.

3- Transfer matrix for the whole system (Usys) computed by multiplying mentioned

transfer matrices of step2.

4- Internal force of the base (fbase) can be reached by dividing −Usys(1, 2) by Usys(1, 1).

5- Displacement of the mass (xend) should be computed.

6- By having displacement, velocity and acceleration of the mass (xend) can be

calculated.

When displacement, Velocity and acceleration of the (xend) achieved for the first step

time, following mentioned step leads to have displacement, velocity and acceleration for

the next step time, and this loop can be continued till reaching step time N

Above code shows how to calculate A, B, D and E coefficients. In this code, Newmark

Beta method used. To have these coefficients, displacement, velocity and acceleration of

www.manaraa.com

34

the step before are needed.

Here, two for loops and one if command are used to calculate transfer matrix of mass

(Um).

In this step, D and E helped to have transfer matrix for spring-damper (Usd). Com-

pared with 4.13 ,D0 and E0 are zero, because there is a one degree of freedom system

which means we just have one station.

Mentioned code in above, creates transfer matrix for force (Uf).

As mentioned before, Usys can be computed by multiplying transfer matrices from

end of the system to starting point. Matrix V keep the values of multiplication of Uf by

Um, and then Usys computed by multiplying V by Usd. Then, fbase calculated by dividing

−Usys(1, 2) by Usys(1, 1).

www.manaraa.com

35

Final step in loop for is computation of displacement, velocity and acceleration.

Displacement xend can be achieved by using the first row of matrix 4.29. Velocity and

acceleration can be calculated by using equations 4.2 and 4.1 respectively.

Final part of the code is drawing the displacement versus time graph.

In below, the step response of the system by DT-TMM method which is shown in

figure 4.1 can be seen in figure 4.3. Mass is two (kg), spring constant is twelve (N/m)

and damping coefficient is three (N − Sec/m).

To compare the DT-TMM method with real output, another code is written which

show the response of the n degree of freedom system based on the newton law. This code

will be explained in the next chapter briefly.

www.manaraa.com

36

Figure 4.3: Step response of one degree of freedom mass-spring-damper system (DT-TMM)

www.manaraa.com

37

CHAPTER 5

ODE Integration of n Degree of Freedom System

To compare the result of the DT-TMM method, a Pyhton code is written for a system

with n degree of freedom (figure5.1) based on the ODE integration which will be explained

in details below. For this issue, odeint command used which a powerful command to

solve ordinary differential equation. Time step in odeint can be adjusted as the program

go along, which lead to much more accurate answer.

Inputs of this code are:

1- Degree of freedom of the system

2-Initial conditions (velocity ẋ and displacement x of the all masses)

3- Parameters of the system (masses, spring constants, damping coefficients and forces)

Output is response of the elements versus time.

Just to make the used procedure here clear, a two degree of freedom (figure5.2)

modeling is explaining.

Using the second newton’s law for the m0 gives:

m0 m1 mn

k0 kn

cn

k1

c0 c1

x0 xnx1

F0 F1 Fn

Figure 5.1: n+ 1 degree of freedom mass-spring-damper system

www.manaraa.com

38

m0 m1
k0 k1

c0 c1

x0 x1

F

Figure 5.2: Two degree of freedom mass-spring-damper system

m0ẍ0 + c0ẋ0 + k0x0 + c1(ẋ0 − ẋ1) + k1(x0 − x1) = 0 (5.1)

For the second mass (m1) can be written

m1ẍ1 + c1(ẋ1 − ẋ0) + k1(x1 − x0) = F (5.2)

Equations 5.1 and 5.2 can be rewrite in matrix form and is called matrix equation of

motion.

m0 0

0 m1


ẍ0

ẍ1

 +

c0 + c1 −c1

−c1 c1


ẋ0

ẋ1

 +

k0 + k1 −k1

−k1 k1


x0

x1

 =

0

F

 (5.3)

To use odeint command in Python, we should have a linear format like Ẋ = AX +B

which can be achieved By changing the variables

ẋ0 = x2 (5.4)

ẋ1 = x3 (5.5)

www.manaraa.com

39

New state spaces form are

Ẋ =



ẋ0

ẋ1

ẋ2

ẋ3


(5.6)

X =



x0

x1

x2

x3


(5.7)

Matrix equation 5.3 and equations 5.4 and 5.5 can be rewrite in below form

ẋ0

ẋ1

ẋ2

ẋ3


=



0 0 1 0

0 0 0 1

k0+k1
m0

−k1
m0

c0+c1
m0

−c1
m0

−k1
m1

k1m1 −c1m1 c1m1





x0

x1

x2

x3


+



0

0

0

F
m1


(5.8)

A =



0 0 1 0

0 0 0 1

k0+k1
m0

−k1
m0

c0+c1
m0

−c1
m0

−k1
m1

k1m1 −c1m1 c1m1


(5.9)

B =



0

0

0

F
m1


(5.10)

www.manaraa.com

40

A is 4×4 matrix that consist of four 2×2 matrices which are called A1, A2, A3 and

A4. The location these matrices can be seen in below

A =

A1 A2

A3 A4

 (5.11)

A1 is a zero matrix. A2 is an identity matrix. A3 and A4 are spring constant and

damping coefficient matrices respectively.A3 and A4 have same pattern. Now related code

will be explained briefly in below.

First, odeint command should be imported from scipy.integrate. Numpy is another

package that is needed in this code. We should have the number of degree of freedom,

initial conditions (displacement and velocity of all elements)and system parameters such

as masses, spring constants, damping coefficients and forces as inputs. n is the number of

States which is two times more than degree of freedom. For example, for a two degree of

freedom system, number of states (n) is equal four.

www.manaraa.com

41

As explained A and B are n by n and n by 1 matrices respectively and Numpy.zeros

define these matrices. In above, system parameters which include masses, spring constants,

damping coefficients and forces defined.

This part of code, describe matrix B. First half of this matrix is zero and the next

half present the applied forces on elements over related masses.

www.manaraa.com

42

This section shows the calculation of A1 and A2 matrices which shaped matrix A. A1

is a zero matrix and A2 is an identity matrix.

Next step is calculation of matrix A3 which related code is above. This matrix shows

the spring constant part of the matrix A.

www.manaraa.com

43

The procedure to have matrix A4 is exactly same as matrix A3. However, this matrix

show the damping coefficient part of the matrix A. Complete code can be seen in the

second appendix.

The Out put of this code for mentioned two degree of freedom system in figure 5.3

with below parameters is: (m0 = 2,m1 = 3, k0 = 20, k1 = 15, c0 = 5, c1 = 6, F = 1 and

with zero initial conditions)

To compare the response of the DT-TMM with odeint, the out put of two method for

one degree of freedom system mentioned in section 4 is shown in figure 5.4. The results

match each other which shows the accuracy of the DT-TMM method.

www.manaraa.com

44

Figure 5.3: Step response of two degree of freedom system (odeint code)

www.manaraa.com

45

Figure 5.4: Comparison of DT-TMM and odeint output for one degree of freedom system

www.manaraa.com

46

CHAPTER 6

Numerical Integration Methods in DT-TMM

6.1 Introduction

Most of the times differential equations do not have exact solution, so numerical

integration method is one way that a good approximation of the solution can be achieved.

There are two kind of numerical integration method first is explicit and another is implicit.

6.2 Explicit Method

Explicit is a straightforward method which means xn+1 can be reached by having xn.

To meke it claer let ’s have a simple example for below equation.

ẋ = f(x, t) (6.1)

By dividing time t to N steps, ∆t is time step and equation 6.1 can be rewrite into

discrete time format like below.

ẋn = f(xn, tn) (6.2)

Suppose that the derivative approximation of step n is

ẋn =
xn+1 − xn

∆t
(6.3)

By plugging equation 6.3 in equation 6.2, we have

xn+1 − xn
∆t

= f(xn, tn) (6.4)

www.manaraa.com

47

xn+1 = xn + ∆tf(xn, tn) (6.5)

xn+1 can be reached by having xn. It means by having initial conditions(x and ẋ), an

approximation solution can be calculated at time t.

6.3 Implicit Method

Implicit is a backward method which is a little different from explicit method. The

difference is just in derivative approximation.

Suppose that the derivative approximation of step n is

ẋn =
xn−xn−1

∆t
(6.6)

By plugging equation 6.6 in equation 6.2, we have

xn−xn−1

∆t
= f(xn, tn) (6.7)

xn = xn−1 + ∆tf(xn, tn) (6.8)

By re-indexing equation 6.8, we have following equation for xn+1

xn+1 = xn + ∆tf(xn+1, tn+1) (6.9)

To have xn+1, equation 6.9 should be solved for each step.

www.manaraa.com

48

6.4 Numerical Integration Methods of DT-TMM

To combine DT-TMM and numerical integration methods, five below numerical

integration methods are chosen to compare the results and choose the best.

1- Fox-Euler

2- Wilson Theat

3- Newmark Beta Method

4- Houbolt

5- Park Stiffly

These methods will be explained in details in following sections. In most of the these

methods, using Taylor series is the point that calculation started. Taylor series is in below

form.

x(ti) = x(ti−1) + ∆T ẋ(ti−1) + (∆T 2/2)ẍ(ti−1) (6.10)

6.4.1 Fox-Euler

In this method, acceleration ẍn supposed to be constant during each time step and is

equal acceleration at end point of related time step. This assumption leads to change in

equation 6.10 which is shown in following.

x(ti) = x(ti−1) + ∆T ẋ(ti−1) +
∆T 2

2
ẍ(ti) (6.11)

Equation 6.11 can be rewrite in below form

ẍ(ti) =
2

∆T 2
[x(ti)− x(ti−1)−∆T ẋ(ti−1)] (6.12)

To use this method in DT-TMM, equation 6.12 should be be in the equation 4.1

(Linear based on the displacement) format which is written again in below.

www.manaraa.com

49

ẍn(ti) = An(ti)xn(ti) +Bn(ti) (6.13)

Equation 6.12 is

ẍ(ti) =
2

∆T 2
x(ti)−

2

∆T 2
[x(ti−1) + ∆T ẋ(ti−1)] (6.14)

A and B can be achieved by comparing 6.14 and 6.13

A =
2

∆T 2
(6.15)

B =
−2

∆T 2
[x(ti−1) + ∆T ẋ(ti−1)] (6.16)

There two left coefficients which should be computed for DT-TMM method. They are

D and E which express equation of velocity. We have below equation which gives us the

velocity when the acceleration is constant.

ẋ(ti) = ẍ(ti)∆T + ẋ(ti−1) (6.17)

By substituting equation 6.12 in 6.17 we have.

ẋ(ti) =
2

∆T
x(ti)−

2

∆T
[x(ti−1) + ∆T ẋ(ti−1)] + ẋ(ti−1) (6.18)

Equation 6.18 should be rewrite in equation 4.2 format which is shown below

ẋn(ti) = Dn(ti)xn(ti) + En(ti) (6.19)

www.manaraa.com

50

ẋ(ti) =
2

∆T
x(ti)− [

2

∆T
x(ti−1) + ẋ(ti−1)] (6.20)

Which means

D =
2

∆T
(6.21)

E = −[
2

∆T
x(ti−1) + ẋ(ti−1)] (6.22)

The step response of two degree of freedom system in section 4 with m0 = 2,m1 =

3, k0 = 20, k1 = 15, c0 = 5, c1 = 6, F = 1 and zero initial conditions is compared with

DT-TMM method by using Fox-Euler and odeint code in figure 6.1. As can be seen,

they pretty match each other, however there are some area which responses are not same

exactly.

6.4.2 Newmark Beta

In Fox-Euler method we supposed that acceleration is constant. To have more accurate

answer, Newmark Beta method consider that acceleration change linearly in each time

step. Parameters β and γ can be changed to have better answer for particular systems.

This method is based on Taylor series too. Taylor series for xi+1 and is using.

x(ti+1) = x(ti) + ∆T ẋ(ti) +
∆T 2

2
ẍ(ti) +

∆T 3

6

...
x (ti) (6.23)

ẋ(ti+1) = ẋ(ti) + ∆T ẍ(ti) +
∆T 2

2

...
x (ti) (6.24)

www.manaraa.com

51

Figure 6.1: Comparison of DT-TMM Fox-Euler and odeint fot the two DOF system

www.manaraa.com

52

Coefficients of third derivative of above equations can be considered as β and γ

x(ti+1) = x(ti) + ∆T ẋ(ti) +
∆T 2

2
ẍ(ti) + (β∆T 3)

...
x (ti) (6.25)

ẋ(ti+1) = ẋ(ti) + ∆T ẍ(ti) + (γ∆T 2)
...
x (ti) (6.26)

If we assume that the acceleration change linearly between time steps we have

...
x (ti) =

ẍ(ti+1)− ẍ(ti)

∆T
(6.27)

Equation 6.27 can be substituted in equations 6.26 and 6.25

x(ti+1) = x(ti) + ∆T ẋ(ti) + (0.5− β)∆T 2ẍ(ti) + β∆T 2ẍ(ti+1) (6.28)

ẋ(ti+1) = ẋ(ti) + (1− γ)∆T ẍ(ti) + γ∆T ẍ(ti+1) (6.29)

6.28 and 6.29 equations can be write in below form to have acceleration and velocity.

ẍ(ti+1) = (
1

β∆T 2
)[x(ti+1)− x(ti)]− (

1

β∆T
)ẋ(ti)− (

1

2β
− 1)ẍ(ti) (6.30)

ẋ(ti+1) = (
1

β∆T
)[x(ti+1)− x(ti)]− (

γ

β
− 1)ẋ(ti)−∆T (

γ

2β
− 1)ẍ(ti) (6.31)

To use Newmark Beta method in DT-TMM, 6.30 and 6.31 equations should be rewrite

in 4.1 and 4.2 equations format.

www.manaraa.com

53

ẍ(ti+1) = (
1

β∆T 2
)x(ti+1)− (

1

β∆T 2
)(x(ti) + ∆T ẋ(ti) + (0.5− β)∆T 2ẍ(ti)) (6.32)

By comparing equation 6.32 and 4.1 we have

A = (
1

β∆T 2
) (6.33)

B = −(
1

β∆T 2
)(x(ti) + ∆T ẋ(ti) + (0.5− β)∆T 2ẍ(ti)) (6.34)

Equation 6.31 is

ẋ(ti+1) = (
γ

β∆T
)x(ti+1) + ẋ(ti) + ∆T [(1− γ)ẍ(ti) + γB] (6.35)

Comparison of 6.35 and 4.2 gives

D =
γ

β∆T
(6.36)

E = ẋ(ti) + ∆T [(1− γ)ẍ(ti) + γB] (6.37)

Two degree of freedom system in section 4 is modeled again with Newmark Beta

method and the result can be comprised with odeint (figure 6.2). It is clear that the result

match each other (β = 1
6

, γ = 0.5)

β and γ can be changed based on the requested accuracy and stability of the system.

Some of these parameters can be seen in below.

1- β = 1
6

, γ = 0.5 : Acceleration change linearly at each time step

www.manaraa.com

54

Figure 6.2: Comparison of DT-TMM Newmark Beta and odeint for the two DOF system

www.manaraa.com

55

Figure 6.3: Comparison of DT-TMM Newmark Beta for different β

2- β = 0 , γ = 0.5 : Acceleration is constant and is equal starting point at each time

step

3-β = 1
8

, γ = 0.5 : Acceleration is constant and is equal starting point till middle

of time step (ẍ(ti) : ti − ti + ∆T
2

) and then change to acceleration of end point (ẍ(ti+1) :

ti + ∆T
2
− ti+1).

4- β = 1
4

, γ = 0.5 : Acceleration is constant and equal the average of acceleration at

start and end point of time step (ẍ(ti+1)+ẍ(ti)
2

).

Step response of two degree of freedom system based on DT-TMM Newmark Beat

for different β is shown in figure 6.3. The results exactly match each other. However, in

more complicated systems the result will not be same exactly.

www.manaraa.com

56

Figure 6.4: Wilson θ

6.4.3 Wilson Theta

Wilson Θ method is based on the assumption that acceleration change linearly between

to time. Figure 6.4 presents this description that acceleration change from time t to

t+ θ∆T linearly when θ ≥ 1.

From time t to t+ θ∆T we can have

ẍt+τ = ẍt +
τ

θ∆T
(ẍt+θ∆T − ẍt) (6.38)

Taking the integration for equation 3.8 gives the velocity and displacement of the

system.

ẋt+τ = ẋt + ẍtτ +
τ 2

2θ∆T
(ẍt+θ∆T − ẍt) (6.39)

xt+τ = xt + ẋtτ +
1

2
ẍtτ

2 +
τ 3

6θ∆T
(ẍt+θ∆T − ẍt) (6.40)

www.manaraa.com

57

By plugging τ = θ∆T in above equations we have

ẋt+θ∆T = ẋt +
θ∆T

2
(ẍt + ẍt+θ∆T) (6.41)

xt+θ∆T = xt + θ∆T ẋt +
θ2∆T 2

6
(2ẍt + ẍt+θ∆T) (6.42)

Acceleration and velocity can be achieved from equations 6.42 and 6.41, also to use

Wison θ in DT-TMM method they should be written in equation 4.1 and 4.2 format.

ẍt+θ∆T =
6

θ2∆T 2
xt+θ∆T −

6

θ2∆T 2
xt −

6

θ∆T
ẋt − 2ẍt (6.43)

ẋt+θ∆T =
3

θ∆T
xt+θ∆T −

3

θ∆T
xt −

θ∆T

2
ẍt − 2ẋt (6.44)

By comparing equations 6.43 and 6.44 coefficients A, B, D and E can be reached.

A =
6

θ2∆T 2
(6.45)

B = − 6

θ2∆T 2
xt −

6

θ∆T
ẋt − 2ẍt (6.46)

D =
3

θ∆T
(6.47)

www.manaraa.com

58

Figure 6.5: Comparison of Wilson θ with different θ with odeint

E = − 3

θ∆T
xt −

θ∆T

2
ẍt − 2ẋt (6.48)

When θ = 1, Wison θ method is same as Newmark Beta method when β = 1
6

and

γ = 0.5.

Comparison of DT-TMM Wilson θ with different and odeint for two degree of freedom

system can be seen in figure 6.5.

6.4.4 Houbolt

Houbolt method is a implicit method which displacement of two step before is necessary.

three below equation can be written based on the Taylor series

www.manaraa.com

59

xt = xt+∆T −∆T ẋt+∆T +
∆T 2

2
ẍt+∆T −

∆T 3

6

...
x t+∆T (6.49)

xt−∆T = xt+∆T − 2∆T ẋt+∆T +
(2∆T)2

2
ẍt+∆T −

(2∆T)3

6

...
x t+∆T (6.50)

xt−2∆T = xt+∆T − 3∆T ẋt+∆T +
(3∆T)2

2
ẍt+∆T −

(3∆T)3

6

...
x t+∆T (6.51)

By solving above equations for velocity and acceleration we have

ẋt+∆T =
1

6∆T
(11xt+∆T − 18xt + 9xt−∆T − 2xt−2∆T) (6.52)

ẍt+∆T =
1

∆T 2
(2xt+∆T − 5xt + 4xt−∆T − xt−2∆T) (6.53)

BY comparing equations 6.52 and 6.53 with equations 4.1 and 4.2 coefficient of

DT-TMM method (A, B, D and E) can be calculated.

A =
2

∆T 2
(6.54)

B =
−1

∆T 2
(5xt − 4xt−∆T −+xt−2∆T) (6.55)

D =
11

6∆T
(6.56)

www.manaraa.com

60

Figure 6.6: Comparison of Houbolt and odeint for the two degree of freedom system

E =
−1

6∆T
(18xt − 9xt−∆T + 2xt−2∆T) (6.57)

Since we need to have two steps before in Houbolt method, Other method like Newmark

Beta or Fox-Euler which do not need to have steps before can be used in just first two

steps. In this research, Newmark Beta is used to have the data for first two steps. In

figure 6.6, step response of Houbolt and odeint for two degree of freedom system compared

together. The result match each other.

www.manaraa.com

61

6.4.5 Park Stiffly Stable

This method is good one for low frequency systems which will be explained in below.

This method is implicit one that need to have two steps before, so Newmark Beta is used

for two first steps. Park Stiffly Stable is the average of two below equations which is

derived from Houbolt method.

ẋt+∆T =
1

6∆T
(11xt+∆T − 18xt + 9xt−∆T − 2xt−2∆T) (6.58)

ẋt+∆T =
1

2∆T
(2xt+∆T − 4xt + xt−∆T) (6.59)

Average of these equations gives

ẋt+∆T =
1

6∆T
(10xt+∆T − 15xt + 6xt−∆T − xt−2∆T) (6.60)

By taking the derivative acceleration can be reached

ẍt+∆T =
1

6∆T
(10ẋt+∆T − 15ẋt + 6ẋt−∆T − ẋt−2∆T) (6.61)

Equation 6.60 substitute in equation 6.61 to have

ẍt+∆T =
10

36∆T 2
(10xt+∆T − 15xt + 6xt−∆T − xt−2∆T) +

1

6∆T
(−15ẋt + 6ẋt−∆T − ẋt−2∆T)

(6.62)

To use Park Stiffly stable method in the DT-TMM, by comparing equations 6.62 and

6.60 with equations 4.1 and 4.2 we have

www.manaraa.com

62

Figure 6.7: Comparison of Park Stiffly Stable and odeint for the two degree of freedom

system

www.manaraa.com

63

A =
100

36∆T 2
(6.63)

B =
10

36∆T 2
(−15xt + 6xt−∆T − xt−2∆T) +

1

6∆T
(−15ẋt + 6ẋt−∆T − ẋt−2∆T) (6.64)

D =
10

6∆T
(6.65)

E =
1

6∆T
(−15xt + 6xt−∆T − xt−2∆T) (6.66)

Figure 6.7 shows the accuracy of Park Stiffly stable method compared with odeint for

two degree of freedom system. As told before, for first two steps, Newmark Beta used.

Result shows that two graphs match each other accurately.

To compare all the methods in one huge system, a 15 degree of freedom system which

studied by kumar and Sankar[24] investigated. For this issue, a Python code based on

the DT-TMM for n degree of freedom system is written which will be explained in next

chapter briefly. The digression of each method can be seen by comparing with odeint.

These systems is just mass- spring without damper. Related parameters is in table 6.1

www.manaraa.com

64

Figure 6.8: Step response of 15 DOF system with different DT-TMM method

Table 6.1: Parameters of the system (DOF=15)

The closest answer belong to Newmark Beta. Now, Trying to find Best β and γ to

have more accurate answer.

When β = 1
8
, we have more accurate response which means Acceleration is constant

and is equal starting point till middle of time step (ẍ(ti) : ti − ti + ∆T
2

) and then change

to acceleration of end point (ẍ(ti+1) : ti + ∆T
2
− ti+1).

www.manaraa.com

65

Figure 6.9: Step response of the 15 DOF system based on Newmark Beta for different β

www.manaraa.com

66

CHAPTER 7

New Approach Based on the Acceleration for DT-TMM

7.1 One Degree of Freedom System

In this section a new approach which is based on the acceleration instead of displace-

ment is studied. State vector in this method is based on the acceleration and internal force.

New DT-TMM method for one degree of freedom system (figure 7.1) will be explained to

make it clear.

Below equations show displacement and velocity in terms of acceleration

ẋn(ti) = An(ti)ẍn(ti) +Bn(ti) (7.1)

xn(ti) = Dn(ti)ẍn(ti) + En(ti) (7.2)

These equations are linear based on the acceleration. Subscript n is related to the

location of the part and denote the number of subsystem. Index i show the related time

step. Moreover, nth station is composed of mn, kn and cn. ẋn and ẍn show the velocity

and acceleration of mn .

An, Bn, Dn and En are the coefficients of equations 7.1 and 7.2 which should be

calculated in each time step based on the related numerical integration method.

As the spring-damper is mass less

f0 = f1 (7.3)

www.manaraa.com

67

m

x0

k

c

x1 x2

F

Figure 7.1: One degree of freedom mass-spring-damper system

m
k

c

x1

f1

x0

f0

x2x1

f2f1

Figure 7.2: Exploded view of One degree of freedom mass-spring-damper system

www.manaraa.com

68

force on the mass-spring is

f0 = k(x1 − x0) + c(ẋ1 − ẋ0) (7.4)

And force equation for the mass is

f2 − f1 = mẍ1 (7.5)

Since, the mass is rigid

x2 = x1 (7.6)

To combine numerical integration and TMM methods, equation 7.1 and 7.2 need to

be plugged in equations 7.4.

By plugging in 7.1 and 7.2 in 7.4

f0 = f1 = k[D1(ti)ẍ1(ti) + E1(ti)−D0(ti)ẍ0(ti)− E0(ti)] + c[A1(ti)ẍ1(ti)

+B1(ti)− A0(ti)ẍ0(ti)−B0(ti)]

(7.7)

Equation 7.7 can be written for x1

ẍ1(ti) =
f1

kD1(ti) + cA1(ti)
+
kD0(ti) + cA0(ti)

kD1(ti) + cA1(ti)
ẍ0(ti) +

k(E0(ti)− E1(ti)) + c(B0(ti)−B1(ti))

kD1(ti) + cA1(ti)

(7.8)

Equations of 7.8 and 7.3 can be written in matrix form


ẍ1(ti)

f1

1

 =


kD0(ti)+cA0(ti)
kD1(ti)+cA1(ti)

1
kD1(ti)+cA1(ti)

k(E0(ti)−E1(ti))+c(B0(ti)−B1(ti))
kD1(ti)+cA1(ti)

0 1 0

0 0 1



ẍ0(ti)

f0

1

 (7.9)

www.manaraa.com

69

Usd is DT-TMM transfer matrix for spring-damper which transfer state vectors from

point 0 to point 1.

Usd =


kD0(ti)+cA0(ti)
kD1(ti)+cA1(ti)

1
kD1(ti)+cA1(ti)

k(E0(ti)−E1(ti))+c(B0(ti)−B1(ti))
kD1(ti)+cA1(ti)

0 1 0

0 0 1

 (7.10)

In the mentioned one degree of freedom system (figure 7.1), one station just exist, so

D0 and E0 are equal zero.

From equation 7.6 we have

ẍ1 = ẍ0 (7.11)

Equation 7.11 and 7.5 can be written in matrix form


ẍ2

f2

1

 =


1 0 0

m 1 0

0 0 1



ẍ1

f1

1

 (7.12)

Um is DT-TMM transfer matrix for mass which transfer state vectors from point 1 to

point 2.

Um =


1 0 0

m 1 0

0 0 1

 (7.13)

Matrix Uf is same as before.

www.manaraa.com

70

Uf =


1 0 0

0 1 −F

0 0 1

 (7.14)

Now by having transfer matrices for spring-damper, mass and force system transfer

matrix can be achieved. The method of multiplication of the matrices is exactly same as

what we had before and it starts from end point to start point.

Usys = UfUmUsd (7.15)

State vector of base is

Zbase =


ẍbase

fbase

1

 (7.16)

State vector of end is

Zend =


ẍend

fend

1

 (7.17)

By applying boundary conditions which are

Fend = 0 (7.18)

ẍbase = 0 (7.19)

www.manaraa.com

71

Base and end state vectors are

Zbase =


0

fbase

1

 (7.20)

Zend =


ẍend

0

1

 (7.21)

By having Usys

Zend = UsysZbase (7.22)

Usys Can be written in this form

Usys =


U11 U12 U13

U21 U22 U23

U31 U32 U33

 (7.23)

Plugging in Zend ,Zbase and Usys in equation 7.22


ẍend

0

1

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33




0

fbase

1

 (7.24)

xend And fbase are unknown From line 2 of equation 7.24

U22fbase + U23 = 0 (7.25)

www.manaraa.com

72

fbase =
−U23

U22

(7.26)

State vector of base is

Zbase =


0

−U23

U22

1

 (7.27)

By having Zbase , state vector of every point in the system can be obtained.

Now by having the initial conditions (x0 , ẋ0 and ẍ0), we can have the displacement

of the system during the time and have a time-domain output.

7.2 Numerical Integration of New Method

An, Bn, Dn and En are the coefficients of equations 7.1 and 7.2 which should be

calculated in each time step based on the related numerical integration method. In below

approaches to calculate coefficients will be explained in details.

7.2.1 Fox-Euler

Fox-Euler is based on the Taylor series and the assumption that the acceleration ẍn is

equal to acceleration at end point during each time step. Taylor series give below equation

x(ti) = x(ti−1) + ∆T ẋ(ti−1) + (
∆T 2

2
)ẍ(ti) (7.28)

Comparison of this equation and equation 7.2 gives coefficients D and E.

D =
∆T 2

2
(7.29)

www.manaraa.com

73

Figure 7.3: Comparison of Fox-Euler DT-TMM based on acceleration and displacement

with odeint

www.manaraa.com

74

E = x(ti−1) + ∆T ẋ(ti−1) (7.30)

We have below equation which gives us the velocity when the acceleration is constant.

ẋ(ti) = ẍ(ti)∆T + ẋ(ti−1) (7.31)

This equation is like equation 7.1 when

A = ∆T (7.32)

B = ẋ(ti−1) (7.33)

Graph 7.3 shows the comparison of DT-TMM based on acceleration and displacement

with odeint. As can be seen the result of DT-TMM for acceleration and displacement is

same.

7.2.2 Newmark Beta

Newmark Beta method consider linear change of acceleration in each time step. We

have below equations for this method which give us velocity and displacement.

x(ti+1) = x(ti) + ∆T ẋ(ti) + (0.5− β)∆T 2ẍ(ti) + β∆T 2ẍ(ti+1) (7.34)

ẋ(ti+1) = ẋ(ti) + (1− γ)∆T ẍ(ti) + γ∆T ẍ(ti+1) (7.35)

www.manaraa.com

75

Figure 7.4: Comparison of Newmark Beta DT-TMM based on acceleration and displace-

ment with odeint

www.manaraa.com

76

Comparing these equations with 7.1 and 7.2 equations gives the DT-TMM coefficients.

D = β∆T 2 (7.36)

E = x(ti) + ∆T ẋ(ti) + (0.5− β)∆T 2ẍ(ti) (7.37)

A = γ∆ (7.38)

B = ẋ(ti) + (1− γ)∆T ẍ(ti) (7.39)

Figure 7.4 shows the comparison of DT-TMM based on acceleration and displacement

with odeint for Newmark Beta when β = 1
8
. The result of DT-TMM for acceleration and

displacement is same.

7.2.3 Wilson θ

Wilson θ method is based on the assumption that acceleration change linearly between

to time. Below equations gives the velocity and displacement.

ẋt+θ∆T = ẋt +
θ∆T

2
(ẍt + ẍt+θ∆T) (7.40)

xt+θ∆T = xt + θ∆T ẋt +
θ2∆T 2

6
(2ẍt + ẍt+θ∆T) (7.41)

By comparing equations 7.40 and 7.41 coefficients A, B, D and E can be reached.

www.manaraa.com

77

Figure 7.5: Comparison of Wilson θ DT-TMM based on acceleration and displacement

with odeint when θ = 0.9

www.manaraa.com

78

Figure 7.6: Comparison of Wilson θ DT-TMM based on acceleration and displacement

with odeint when θ = 1.03

www.manaraa.com

79

A =
θ∆T

2
(7.42)

B = ẋt +
θ∆T

2
ẍt (7.43)

D =
θ2∆T 2

6
(7.44)

E = xt + θ∆T ẋt +
θ2∆T 2

3
ẍt (7.45)

Below graph show the comparison of odeint with DT-TMM based on the acceleration

and displacement for Wilson θr when θ = 0.9. As can be seen, the output based on

displacement is more accurate. Figure 25 shows that Wilson θ based on the acceleration

for θ > 1 is unstable.

7.3 Pyhton Code for n Degree of Freedom with New Approach of DT-TMM

Below code shows the calculation of A, B, D and E for Fox-Euler, Newmark Beta

and Wilson .

www.manaraa.com

80

New transferee matrices (Uf , Usd and Um) based on the acceleration calculated with

python as following

www.manaraa.com

81

CHAPTER 8

CONCLUSION

8.1 Conclusion

In this research, new methods for modeling and controlling large systems with a lot of

subsystems and flexible structures studied. There are many ways that mentioned systems

can be modeled, but each of them has its benefits and drawbacks.

The Transfer Matrix Method which is called TMM is one of these methods that

that is very efficient to model large structures. TMM reduces the size of matrices which

results in fewer computation. Also, it is easy to add or eliminate one subsystem to our

system without any issues. TMM like any method has its limitations which decrease its

application. This method just perform frequency domain output, since it is not possible

to have time-domain response of the system. Moreover, due to using Laplace transform,

it can not model non-linear systems.

To overcome the drawbacks of TMM, numerical integration method can be combined.

This new method is called Discrete Time Transfer Matrix Method (DT-TMM). By using

DT-TMM, real response of the system during the time can be achieved. In this way, we

can have time-domain output. Also, non-linear systems can be modeled by DT-TMM.

It should be mentioned that DT-TMM has the benefits of TMM at the same time. It

means, DT-TMM has low size of matrices, fewer computation and flexibility too. There

are some numerical integration methods can be combined with TMM which some of them

studied in this research. Every numerical method has different accuracy which depends

on some factors like time step.

In chapter 3, state vectors and transfer matrix method is introduced. A one and two

degree of freedom modeled in this chapter to make the procedure clear.

Chapter 4, talks about the DT-TMM method. In this chapter, One degree of freedom

www.manaraa.com

82

mass-spring- damper system modeled with DT-TMM method. To have TMM and

numerical integration method simultaneously, acceleration and velocity described in terms

of displacement. Also, DT-TMM Python code for one degree of freedom explained in

details.

To compare the output of DT-TMM with a real system, in chapter 5, a Python code

is written for a system with n degree of freedom based on the ODE integration. The

algorithm of this code explained. The output of DT-TMM and ode integration matched

each other which shows the accuracy of the DT-TMM method.

In chapter 6, different numerical integration methods which can be used in the DT-

TMM investigated. Fox-Euler, Wilson theat , Newmark Beta, Houbolt and Park Stiffly

stable are the method which studied. Coefficients of the DT-TMM based on acceleration

calculated for each method and response of a two degree of freedom system compared

with ode integration for each of them. To have more accurate comparison, a 15 degree

of freedom which was studied by Kumar and Sankar [24] with time duration 0.8 second

studied for all five numerical methods. Newmark Beta when β = 1
8

and γ = 1
2

has the

most accurate response.

At the end, in chapter 7, a new approach which is based on the acceleration instead

of displacement is studied. In this new method, velocity and displacement described

based on the acceleration. Fox-Euler, Wilson theat , Newmark Beta are the numerical

methods which studied in this way. Results show that Newmark Beta is more accurate

and stable with this approach. Also, output of Newmark Beta when using acceleration and

displacement is same. However, the result for Fox-Euler and Wilson theat are different.

8.2 Future Work

As is shown, the DT-TMM is an efficient and accurate method that can be used in

modeling of different systems. However discretizing is an issue in this way which may be

lead to instability.

www.manaraa.com

83

DT-TMM because of the numerical integration method is very sensitive to time step,

especially in complicated systems. Finding a way to decrease this problem is a very

interesting topic that can be studied in the future. Also, there are other methods that

their compatibility with TMM needs to be studied.

www.manaraa.com

84

REFERENCES

1-Pestel, E. C. and Leckie, F. A., Matrix Methods in Elastomechanics. New York:
McGraw Hill, 1963.

2- Book, W. J., Modeling, Design and Control of Flexible Manipulator Arms. PhD
thesis, Massachusetts Institute of Technology, Apr. 1974.

3- Book, W. J., Majette, M. W., and Ma, K., “Distributed systems analysis package
(dsap) and its application to modeling flexible manipulators,” tech. rep., NASA, July
1979. Final Report, Subcontract No. 551 to Charles Stark Draper Laboratory, NASA
Contract NAS9-13809.

4- Book, W. J., Majette, M. W., and Ma, K., “Frequency domain analysis of the
space shuttle manipulator arm and its payloads,” tech. rep., NASA, February 1981.
Final Report, Subcontract No. 586 to Charles Stark Draper Laboratory, NASA Contract
NAS9-13809.

5- R. Krauss, ”An Improved Technique for Modeling and Control of Flexible Struc-
tures,” 2006.

6- R. W. Krauss and W. J. Book, ”Transfer Matrix Modeling of Systems With Non-
collocated Feedback,” Journal of Dynamic Systems, Measurement, and Control, vol. 132,
2010.

7- R. W. Krauss and W. J. Book, ”A Python Module for Modeling and Control Design
of Flexible Robots,” IEEE, 2007.

8- J.-F. Yu, H.-C. Lien and B. P. Wang, ”Exact Dynamic Analysis of Space Structures
Using Timoshenko Beam Theory,” AIAA Journal, vol. 42, no. 4, pp. 833-839, 2004.

9- J. Xiao-jun and F. Shi-dong, ”Analysis of the flexural vibration of ship’s tail shaft by
transfer matrix method,” Journal of marine science and application, vol. 7, pp. 179-183,
2008.

10- B. He, X. Rui and H. Zhang, ”Transfer Matrix method For Natural Vibration
Analysis of Tree System,” Mathematical Problems in Engineering, vol. 2012, 2012.

11- X. Rui, G. Wang, Y. Lu and L. Yun, ”Transfer Matrix Method For Linear Mulit-
body System,” Multibody System Dynamics, vol. 19, pp. 179-207, 2008.

12- R. Krauss, O. Brüls and W. Book, ”Two Competing Linear Models For Flexible
Robots: Comparison, Experimental Validation, and Refinement,” in American Control

www.manaraa.com

85

Conference, Portland, 2005.

13- C. Guo-long and N. Wu, ”Dynamic charachteristics of a WPC-comparison of
transfer matrix method and FE method,” Journal of Marine Science and Application, vol.
2, no. 2, 2003.

14- Mihail Boiangiu1 , Valentin Ceausu1 and Costin D Untaroiu2 “A transfer ma-
trix method for free vibration analysis of Euler-Bernoulli beams with variable cross section”

15- M. A. Dokanish, “A new approach for plate vibration: combination of transfer
matrix and finite element technique,” Journal of Mechanical Design, vol. 94, pp. 526–530,
1972

16- J. W. Zu and Z. Ji, “An improved transfer matrix method for steady-state analysis
of nonlinear rotorbearing systems,” Journal of Engineering for Gas Turbines and Power,
vol. 124, no. 2, pp. 303–310, 2002.

17- A. M. Ellakany, K. M. Elawadly, and B. N. Alhamaky, “A combined transfer matrix
and analogue beam method for free vibration analysis of composite beams,” Journal of
Sound and Vibration, vol. 277, no. 4-5, pp. 765–781, 2004

18- Mitao Ohga,Tsunemi Shigematsu, and Takashi Hara, “Combined finite element-
transfer matrix method,” J. Eng. Mech., 1984, 110(9): pp. 1335-1349.

19- Bao Rong, Xiaoting Rui ,GuopingWang “Modified Finite Element Transfer Matrix
Method for Eigenvalue Problem of Flexible Structures” Journal of Applied Mechanics
Copyright c© 2011 by ASME MARCH 2011, Vol. 78 / 021016-1

20-U. Lee, “Vibration analysis of one-dimensional structures using the spectral transfer
matrix method,” Engineering Structures, vol. 22, no. 6, pp. 681–690, 2000.

21- S.-C. Hsieha, J.-H. Chenb, and A.-C. Lee, “A modified transfer matrix method for
the coupling lateral and torsional vibrations of symmetricrotor-bearing systems,” Journal
of Sound and Vibration, vol. 289, pp. 294–333, 2006.

22- G. C. Horner andW. D. Pilkey, “The riccati transfer matrix method,” Journal
ofMechanical Design , vol. 1, pp. 297–302, 1978.

23- Y. M. Huang and C. D. Horng, “Extended transfer matrix method with complex
numbers for branched torsional systems,” Journal of Vibration and Control, vol. 7, no. 2,
pp. 155–166, 2001.

24- A. S. Kumar and T. S. Sankar, ”A New Transfer Matrix Method For Response
Analysis Of Large Dynamic Systems,” Computers and Structures Journal, vol. 23, no. 4,

www.manaraa.com

86

pp. 545-552, 1986.

25- X. Rui, B. He, Y. Lu, W. Lu and G. Wang, ”Discrete Time Transfer Matrix Method
for Mutibody Sytem Dynamics,” Multibody System Dynamics, vol. 14, pp. 317-344, 2005.

26- X. Rui, G. Wang, L. Yun, B. He, F. Yang and B. Rong, ”Advances in Transfer
Matrix Method Of Multibody System,” in ASME 2009 International Design Engineering
Technical Conferences Computers and Information in Engineering Conference, San Diego,
2009.

27- B. Rong, X. Rui, G. Wang and F. Yang, ”Discrete Time Transfer Matrix Method
for Dynamics of Multibody System with Real-Time Control,” Journal of Sound and
Vibration, vol. 329, pp. 627-643, 2010.

28- B. He, G. Wang and X. Rui, ”Riccati Discrete Time Transfer Matrix Method for
Elastic Beam Undergoing Large Overall Motion,” Multibody System Dynamics, vol. 18,
pp. 579-598, 2007.

www.manaraa.com

87

APPENDIX A

DT-TMM (One Degree of Freedom)

www.manaraa.com

88

www.manaraa.com

89

www.manaraa.com

90

APPENDIX B

ODE Integration (n Degree of Freedom)

www.manaraa.com

91

www.manaraa.com

92

www.manaraa.com

93

www.manaraa.com

94

APPENDIX C

DT-TMM n Degree of Freedom

www.manaraa.com

95

www.manaraa.com

96

www.manaraa.com

97

www.manaraa.com

98

www.manaraa.com

99

www.manaraa.com

100

APPENDIX D

DT-TMM n Degree of Freedom Based on the Acceleration

www.manaraa.com

101

www.manaraa.com

102

www.manaraa.com

103

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Problem Statement
	Software Design

	LITERATURE REVIEW
	Introduction to State Vector and Transfer Matrix Method
	State Vector
	Transfer Matrix Method

	Introduction to Discrete Time Transfer Matrix Method(DT-TMM)
	Why DT-TMM
	DT-TMM for One Degree of Freedom System
	Pyhton Code for One Degree of Freedom DT-TMM

	ODE Integration of n Degree of Freedom System
	Numerical Integration Methods in DT-TMM
	Introduction
	Explicit Method
	Implicit Method
	Numerical Integration Methods of DT-TMM
	Fox-Euler
	Newmark Beta
	Wilson Theta
	Houbolt
	Park Stiffly Stable

	New Approach Based on the Acceleration for DT-TMM
	One Degree of Freedom System
	Numerical Integration of New Method
	Fox-Euler
	Newmark Beta
	Wilson

	Pyhton Code for n Degree of Freedom with New Approach of DT-TMM

	CONCLUSION
	Conclusion
	Future Work
	REFERENCES
	APPENDICES
	DT-TMM (One Degree of Freedom)
	ODE Integration (n Degree of Freedom)
	DT-TMM n Degree of Freedom
	DT-TMM n Degree of Freedom Based on the Acceleration

